Finite Element Simulation of Shear Wave Propagation Induced by a VCTE Probe
نویسندگان
چکیده
The Fibroscan (Echosens, Paris, France) device based on vibration–controlled transient elastography (VCTE) is used to non– invasively assess liver stiffness correlated to the hepatic fibrosis. Stiffness is quantified by measuring the velocity of a low–frequency shear wave traveling through the liver, which is proportional to the Young’s modulus E. It has been demonstrated that E is highly correlated with liver fibrosis stage as assessed by liver biopsy. To study the emergence of a two shear wave with different velocity in liver detected with the Fibroscan on different in vivo cases, simulations with finite element models (FEM) on a 3D anatomical model of liver and ribs can help to understand this propagation patterns. Indeed, the shape and the direction of the shear wave front induced by the Fibroscan probe in the liver are not entirely known.
منابع مشابه
Numerical Modeling and Experimental Study of Probe-Fed Rectangular Dielectric Resonator Antenna (RDRA) Supported by Finite Circular Ground Plane
Dielectric Resonator Antennas (DRAs) have received increased interest in recent years for their potential applications in microwave and millimeter wave communication systems. DRAs are normally used with the support of a ground plane. The radiation and impedance properties therefore depend not only on their physical dimensions and dielectric properties, but also on the size of the ground plane. ...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملA two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis
Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...
متن کاملWave Propagation in Sandwich Panel with Auxetic Core
Auxetic cellular solids in the forms of honeycombs and foams have great potential in a diverse range of applications, including as core material in curved sandwich panel composite components, radome applications, directional pass band filters, adaptive and deployable structures, filters and sieves, seat cushion material, energy absorption components, viscoelastic damping materials and fastening...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010